Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619794

RESUMO

Several inflammatory diseases are characterized by a disruption in the equilibrium between the host and its microbiome. Due to the increase in resistance, the use of antibiotics for the widespread, nonspecific killing of microorganisms is at risk. Pro-microbial approaches focused on stimulating or introducing beneficial species antagonistic toward pathobionts may be a viable alternative for restoring the host-microbiome equilibrium. Unfortunately, not all potential probiotic or synbiotic species and even subspecies (to strain level) are equally effective for the designated pathology, leading to conflicting accounts of their efficacy. To assess the extent of these species- and strain-specific effects, 13 probiotic candidates were evaluated for their probiotic and synbiotic potential with glycerol on in vitro oral biofilms, dissemination from biofilms to keratinocytes, and anti-inflammatory activity. Species- and strain-specific effects and efficacies were observed in how they functioned as probiotics or synbiotics by influencing oral pathobionts and commensals within biofilms and affected the dissemination of pathobionts to keratinocytes, ranging from ineffective strains to strains that reduced pathobionts by 3 + log. In addition, a minority of the candidates exhibited the ability to mitigate the inflammatory response of LPS-stimulated monocytes. For a comprehensive assessment of probiotic therapy for oral health, a judicious selection of fully characterized probiotic strains that are specifically tailored to the designated pathology is required. This approach aims to challenge the prevailing perception of probiotics, shifting the focus away from "form over function." Rather than using unproven, hypothetical probiotic strains from known genera or species, one should choose strains that are actually functional in resolving the desired pathology before labelling them probiotics.

2.
Front Microbiol ; 14: 1219692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485503

RESUMO

Probiotics have demonstrated oral health benefits by influencing the microbiome and the host. Although promising, their current use is potentially constrained by several restrictions. One such limiting factor lies in the prevailing preparation of a probiotic product. To commercialize the probiotic, a shelf stable product is achieved by temporarily inactivating the live probiotic through drying or freeze drying. Even though a lyophilized probiotic can be kept dormant for an extended period of time, their viability can be severely compromised, making their designation as probiotics questionable. Additionally, does the application of an inactive probiotic directly into the oral cavity make sense? While the dormancy may allow for survival on its way towards the gut, does it affect their capacity for oral colonisation? To evaluate this, 21 probiotic product for oral health were analysed for the number of viable (probiotic), culturable (CFU) and dead (postbiotic) cells, to verify whether the commercial products indeed contain what they proclaim. After isolating and uniformly lyophilizing three common probiotic species in a simple yet effective lyoprotective medium, the adhesion to saliva covered hydroxyapatite discs of lyophilized probiotics was compared to fresh or reactivated lyophilized probiotics. Unfortunately, many of the examined products failed to contain the claimed amounts of viable cells, but also the strains used were inadequately characterized and lacked clinical evidence for that unknown strain, questioning their label of a 'probiotic'. Additionally, lyophilized probiotics demonstrated low adhesive capacity compared to their counterparts, prompting the question of why fresh or reactivated probiotics are not currently used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...